

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1524-1528 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030715241528 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1524

A One-Pass JSON compiling technique

Nikhil Kumar Y.
Student,Dronacharya College of Engineering,Gurgaon, Haryana

Submitted: 25-06-2021 Revised: 06-07-2021 Accepted: 09-07-2021

ABSTRACT: JavaScript Object Notation(JSON)

open standard file format and data interchange

format. It uses human readable text to store data.

This paper introduces a compiling technique that is

lightweight to implement and compiles it into a C –

family data structure using code reflection. Such a

software is called JSON parser[1].The implantation

of JSON parser described will help in parsing

JSON files whose structure is previously known

and those files whose structures is unknown.

KEYWORDS: JSON, JSON Parser, C – family

languages (C++, Java, etc), Compiling, Parsing,

Compiler implementation, Code Reflection.

I.INRODUCTION
JavaScript Object Notation(JSON) open

standard file format and data interchange format. It

uses human readable text to store data. JSON was

based on JavaScript but it is language independent

data format. JSON text is serialized[1] meaning

order of value matters. This compiler will compile

the data while on the fly i.e. while the program

using the data is being executed and it will also

multiple output formats in language being compiled

to depending upon weather the structure of the data

is known or unknown. Just like a standard compiler

the JSON file will be first processed by the front

end of the compiler i.e. The JSON data will be

stored in a symbol tree and the back end of the

compiler will be described for two conditions. One

where the structure of the data will be known and

other where structure will not be known. One part

of the compiler will be using Code Reflection

features of the language. While other will present

the data in a list.

JSON represents data as a sequence of tokens.

There are six such tokens:

I. Structural Characters

II. Strings

III. Numbers

IV. Literals

The Structural Characters include six characters:

Left curly bracket: - „{„

Right curly bracket: - „}‟

Left square bracket: - „[„

Right square bracket: - „]‟

Colon: - „:‟

Coma: - „,‟

They are used to represent objects or array

Object are data stored as key/value pairs

Their regular expression is:

{ (member,)
*
+member}

Where,

member = key : value

Key = String

Value = Object|Array|String|Literal|Numbers

Array is used to represent a sequence of values

With regular expression:

[(value,)
*
+value]

Strings are sequences of characters beginning with

quotes their regular expression being

Numbers are sequences of digits they may have

fractions or exponents and represent decimal

numbers with base 10.

Literals have three values: true, false, null.

A Json file may contain any of these data structures

comprised of the 4 tokens.

Since Json file stores the data the front end

of the compiler will only analyse the tokens and

convert them into values it will require lexical

analysis parsing and sematic analysis. The JSON

file can contain any of the four types of data object,

array, string. An internal data structure should be

used to store the values of the JSON file to help

with the locality of reference during program

execution. This will improve cache performance.

The internal data structure used may depend of

weather we know the structure of the JSON file or

not. In-case the structure of the JSON file is not

known Lists can be used to represent the file if it is

known the known data structure can be used to

produce the output.

II. FRONT-END OF THE COMPILER
In the front end of the compiler lexical

analysis , parsing and semantic analysis will be

done. The characters in the program will be read by

the lexical analyser and will be tokenised i.e.

converted into tokens these tokens will be passed

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1524-1528 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030715241528 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1525

on to the parser to validate if they are following

correct syntax. and will be further passed on to

semantic analyser which will have a table

associating elements of code to particular tokens.

The code will differ according to weather the

structure is known or unknown.

Implementation of the Lexical analyser

The lexical analyser will work based on a

table of regular expression based on which tokens

will be generated. Some characters will have

associated piece of code by the table in order to

help in generating token. These code will have to

be associated with generating tokens for Strings,

Numbers, and Literals.

The table will be

Character Associated

code function

Token type

{|}|[|]|:|, Move to next

phase

{|}|[|]|:|,

Respectively

(Token type

will be the

character

itself)

“ Generate string

until “ is

encountered

String

1-9 Generate digit

until

‟,‟or‟]‟or‟}‟

 is encountered

Number

t Check if true

and generate

token true

Literal

f Check if false

and generate

token false

Literal

n Check if null

and generate

token null

Literal

Further more a enumerable variable

storing class of will be used to simplify parsing.

This variable will store Token type. Particular

token types are shown in above table. From here

the token will be passed to the parser.

Implementation of the parser

The parser will work based on the parsing

table(Table 1)a stack and a variable current_state.

Current state is initialised to 0.The parsing table is

generated usingstate diagram[2].The column of the

parse table represents a state and each row

represents a token. Each token have a command

associated to it for every state. The commands

being:

Goto(state):setcurrent_state to state

Push(state):push the state into the stack

X:error return error

return: return output

Pop(): pop the stack and use the element returned

as current_state

In case of return error there is an error in the

file.After every set of commands are executed and

if the commands are not “return output” or “error”

the state value ,token, and it‟s value is passed to the

semantic analyser.

Implementation of semantic analyser

The semantic analysis have a table similar

to parsing table stored in it this table have

commands to perform during state transition and

each command is stored in list that have both a

stack and list like interface. This list take a pairas

it‟svalue and stores it. These include name of

current key and binary value indicating weather the

value is being stored in a object or an array. This

will help in reconstructing the name of the array or

object. Beside the parsing table semantic analyser

also uses a Key field and current state denoting

whether the current item is a object or an array.

Along these variables a few functions are

used to achieve the last part the definition of these

functions vary depending upon whether we know

the structurer of the JSON or not. When the values

are known these functions are:

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1524-1528 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030715241528 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1526

GetName():This function traverses the stack and

constructs the name using the following method.

For i
th

 element in the stack add name of the element

to the name being computed

if second variable of the stack is true and append it

with a „.‟.ie if the element in the stack is

[abz , true] append current name with “abz.”

If the second variable is false add the prefix „[„

before adding the name and follow it with the

suffix „].‟ I.e. if the element is

[3,false] append current name with “[3].”

This method will generate the name coupled with

code reflection this method will point to wards the

memory location of the name that is generated.

Replace the value in the memory location of the

name with value in token_value

i.e. value of the token

Push(Key, true/false) will push values of key and

true or false representing object or array.

(Table 1)

 0 1 2 3 4 5 9 10

String Goto(1) X Goto(3) X 5 X Goto(10) X

Number Goto(1) X X X 5 X Goto(10) X

Literal Goto(1) X X X 5 X Goto(10) X

{ Push(1)

Goto(2)

X X X Push(5)

Goto(2)

X Push(10)

Goto(2)

X

[Push(1)

Goto(9)

X X X Push(5)

Goto(9)

X Push(10)

Goto(9)

X

} X X X X X Pop() X X

] X X X X X X X Pop()

: X X X Goto(4) X X X X

, X X X X X Goto(2) X Goto(9)

EoF X return X X X X X X

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1524-1528 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030715241528 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1527

(Table 2)

 0 1 2 3 4 5 9 10

String Value=

token..value

 Key=

token.value

 Value(

GetName())

=

token.value.

 Value(

GetName())

=

token.value.

Number Value=

token.value

 Value(

GetName())

=

token.value.

 Value(

GetName())

=

token.value.

Literal Value=

token.value

 Value(

GetName())

=

token.value.

 Value(

GetName())

=

token.value.

{ Push(Key,

true)

 Push(name,

true)

 Push(name,

true)

[Push(Key,

false)

Key =0

 Push(Key,

false)

Key =0

 Push(Key,

false)

Key=0

} Curre

ntnam

e

=Pop(

).first

] C

ur

re

nt

na

m

e

=P

op

().

fir

st

:

, K

ey

++

EoF Return

Value.

 \

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 7 July 2021, pp: 1524-1528 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030715241528 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1528

(Continuation from page2) Pop() will recover the

value of key and binary value indicating array or

object was being stored.

The above method when used to parse JSON parses

the data in the JSON file into a data format present

in the language

III.CONCLUSION
The outcome of the theorised parser is that a

lightweight parser can be implemented in any of

the c – family languages. Such an implementation

is important for may web based application written

in popular languages such as java ,c# and

c++.These implementation will provide the said

languages an easy method to access data present in

the web without much effort.

REFFERENCES

[1]. Internet Engineering Task Force (IETF),

Request for Comments: 8259

https://datatracker.ietf.org/doc/html/rfc8259

[2]. Compilers - Principles, Techniques, and

Tools-Pearson_Addison Wesley (2006),

Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman,ISBN 0-321-48681-1

